Make your own free website on Tripod.com

 

 

SIRALI İKİLİ :

   a ve b elemanlarının belirttiği ( a , b ) şeklindeki ikiliye sıralı ikili denir. Sıralı ikili denilmesindeki sebep bileşenlerin yeri değiştiğinde ikilinin değişmesindendir.

Yani : (a , b ) (b , a ) dir. 

                                                                                         

Örnek :

A( 1 , 3 ) noktası ile B( 3 , 1 ) noktası eşit noktalar değildir.

 Noktalar kümesinin elemanları sıralı ikililerdir.  

                                                                                                                                       

 

Sıralı ikililerin bileşenleri birinci bileşen, ikinci bileşen olarak adlandırılır.

 

 

          

 

 

Sıralı İkililerin Eşitliği :

Sıralı ikililerin eşitliği için birinci ve ikinci bileşenler birbirine eşit olmalıdır.

Yani (x , y ) = (a , b )  ise x = a ve y = b

ÖRNEK :

( x + 3 , y – 1 ) = ( 6 , 4 ) ise x ve y sayıları kaçtır?

Çözüm :

Sıralı ikililerin eşitliği için birinci ve ikinci bileşenler birbirine eşit olmalıdır.

Yani  x +3 = 6          y – 1 = 4

       x = 6 – 3          y = 4 + 1

          x = 3       ve      y = 5 bulunur.

 

 
 


( x + 3 , y – 1 ) = ( 6 , 4 )   

                               

                                             

 

 

1. ( x + 3 , y + 1 ) = ( 1 , 2 ) ise x = ? ve y = ?

2. ( 2x , y - 5 )    = ( 8 , -3 ) ise x = ? ve y = ?

3. ( x/2 , 3y  )     = ( 6 , 0 ) ise x = ? ve y = ?

4. ( 2x + 1 , 4 )   = ( 7 , y - 2 ) ise x = ? ve y = ?

 

 

 

 
ÖDEV 1 :

 

 

 

 

 

KARTEZYEN ÇARPIM

  A ve B herhangi iki küme olsun. Birinci bileşeni A’ dan, ikinci bileşeni B’ den alınarak oluşturulabilecek tüm sıralı ikililerin kümesine, A ile B’ nin kartezyen çarpımı denir ve A x B biçiminde gösterilir. Buna göre;

          şeklinde gösterilir.

 ÖRNEK : Aynı futbol takımında oynayan Ali, Sertaç ve Tamer, 7, 10 ve 11 numaralı formaları giyebilirler. Bu oyuncuların seçebilecekleri formaları gösteren sıralı ikilileri yazalım.

ÇÖZÜM : A kümesi A = { Ali , Sertaç , Tamer }

               B kümesi B = { 7 , 10 , 11 }

A X B = { (Ali, 7 ), (Ali, 10), (Ali, 11 ), (Sertaç,7 ), (Sertaç,10 ), (Sertaç,11 ),

                  (Tamer, 7 ), (Tamer, 10 ), (Tamer, 11 ) }

ÖRNEK : A = {1,2 } , B = {3,a} olduğuna göre A x B ve BxA kümelerini yazınız.

ÇÖZÜM :

AxB = {(1,3), (1,a), (2 ,3), (2 ,a) }

BxA = {(3 ,1), (3,2 ), (a ,1), (a , 2)}

 ÖRNEK : A = { -1, 1, 2 } , B = { 0, 1 } olduğuna göre A x B  kümesini analitik düzlemde gösteriniz.

 ÇÖZÜM :

A X B = { (-1 , 0 ), (-1 , 1), (1 , 0 ), ( 1 , 1 ), ( 2 , 0 ), (2 , 1 )}

 

 

 

 

ÖRNEK : A X B = { (-1 , 0 ), (-1 , 1), (1 , 0 ), ( 1 , 1 ), ( 2 , 0 ), (2 , 1 )} kartezyen çarpımını oluşturan A ve B kümelerini yazalım.

ÇÖZÜM : Birinci bileşenler A kümesini, ikinci bileşenler B kümesini oluşturur. Tekrar eden eleman küme içine bir kez yazılır.

               A kümesi A = { -1, 1 , 2 }

               B kümesi B = { 0, 1 }

ÖRNEK : A X B = { ( 0 , 0 ), ( 0 , 1), ( 0 , 2 ), ( -3 , 0 ), ( -3 , a ), (-3 , 2 )} kartezyen çarpımında a ile gösterilen sayı kaçtır?

ÇÖZÜM : 0 ile başlayan sıralı ikililerin ikinci bileşenleri 0, 1, 2 dir. –3 ile başlayan sıralı ikililerin ikinci bileşenleri de 0, 1, 2 olmalıdır. Bu nedenle a elemanı 1 olmalıdır.

 

1. A = { 0, 1, 2 ) ve B = { -2, 2 } ise AXB = ?

2. A = { -2, 0, 3 ) ve B = { -1, 0, 1 } ise AXB = ?

3. A = { 2, 3, 4, 5 ) ve B = {6 } ise AXB = ?

4. A = { -1, 1, 2 ) ve B = { -3, 2, 5 } ise AXB çarpımını analitik düzlemde gösteriniz.

5. A X B = { (A, 2 ), (A, 5), ( B, 2 ), ( B, 5 ), ( C, 2 ), ( C, 5 ) } ise A ve B kümelerini yazınız.

6. A X B = { ( 2 , 2 ), ( 2 , 5), ( 2 , 8 ), ( 3 , 2 ), ( 3 , 5 ), ( 3 , 8 ), ( a , 2 ), ( 4 , 5 ), ( 4 , 8 )}  kartezyen çarpımında a ile gösterilen sayı kaçtır?

7. A X B = { (-3, -2 ), (-3, 1), ( 0, -2 ), ( 0, 1 ), ( 2, -2 ), ( 2, 1 ) } ise AUB kümesini yazınız.

 

 

 

 

 

 

 

 
ÖDEV 2 :

 

 

 

 

 

 

 

 

 

KARTEZYEN ÇARPIMININ ÖZELLİKLERİ

S(A) ; A kümesinin eleman sayısını göstermektedir.

1) s(AxB) = s(BxA) = s(A).s(B)

2) AB ise AxB BxA değişme özelliği yoktur.

3) (AxB)xC = Ax(BxC) birleşme özelliği vardır .

4) Ax(BUC) = (AxB)U(AxC)

5) Ax(B C) = (AxB) (AxC)

6) AxA = A²

 

 

 

ÖRNEK SORULAR

1.      1.      1.      1.      1.      A= { 2, 5 } ve AXB = {(2 ,1), (2,2), (2 ,4), (5 , 1), (5 ,2), (5,4) }

olduğuna göre B kümesinin elemanları toplamı kaçtır?

ÇÖZÜM : Sıralı ikililerin ikinci bileşenleri B kümesinin elemanlarını verir.

B = { 1, 2, 4 } olur. Toplam : 1 + 2 + 4 = 7 olur.

2.     2.     2.     2.     2.     A, B ve C üç kümedir. s(BUC) = 4 ve s[Ax(BUC)] = 32 olduğuna göre A dan A ya kaç tane bağıntı yazılabilir?

ÇÖZÜM : s[Ax(BUC)] = S(A). S(BUC) = S(A). 4 = 32

S(A ) = 32:4 = 8 dir.

A dan A ya yazılabilecek bağıntı sayısı 28.8 = 264 tanedir. 

BAĞINTI

A ve B herhangi iki küme olsun. AxB ‘ nin her alt kümesine , A’ dan B’ ye bir bağıntı denir.

ÖRNEK : AxB = {(1,3), (1,a), (2 ,3), (2 ,a) } kartezyen çarpımının 4 tane elemanı vardır. Bu kümenin alt kümeleri sayısı 24 = 16 ‘dır.

O halde A ‘ dan B ‘ ye 16 tane bağıntı tanımlanabilir. Örneğin

β1 = {(1,3), (1,a) } ve β2 = { (1,a), (2 ,3), (2 ,a) } alt kümeleri A dan B ye birer bağıntıdır.

SONUÇ : s(A) = m ve s(B) = n ise A dan B ye tanımlanabilen bağıntı sayısı 2m.n tanedir.

 

ÖRNEK SORULAR

1.      1.      1.      1.      1.      Doğal sayılar kümesinde β = {(x,y)| x + y = 2 } bağıntısının sıralı ikililerini yazalım.

ÇÖZÜM : Bağıntı (x , y ) şeklinde ve x ile y nin toplamı 2 olan sıralı ikilileri yazın diyor. Bunlar: β = {(0,2), (1,1), (2,0) } olur.

2.     2.     2.     2.     2.     Doğal sayılar kümesinde β = {(x,y)| x > y } bağıntısının sıralı ikililerini yazalım.

ÇÖZÜM : Bağıntı (x , y ) şeklinde ve x in y den büyük olduğu sıralı ikilileri yazın diyor. Bu sıralı ikililerin tümünü yazamayız.

Bu nedenle β = {(1,0), (2,0), (3,0),..., (2,1), (3,1), (4,1),..., } şeklinde bu bağıntının sıralı ikililerini gösterebiliriz.

3.     3.     3.     3.     3.     Reel sayılar kümesinde β = { (x,y) | l x l = 3 ve x+2> y > 0 } bağıntısının gösterdiği alan kaç birim karedir?

ÇÖZÜM : l x l = 3 demek x = ± 3 demektir.

x = 3 ' ü ikinci eşitsizlikte yerine yazarsak x + 2 > y > 0 , yani 5 > y > 0 olur.

x = - 3 ' ü ikinci eşitsizlikte yerine yazarsak x + 2 > y > 0 , yani -1> y > -3 olur.

Bölge bir kenarı 6 birim olan karedir. Alanı 6x6 = 36 olur.

 

 

 

FONKSİYON

 

   Mercek : Fonksiyonu üzerine getirildiği şekli daha büyütmek.

Saat : Fonksiyonu zamanı göstermek.

 

Terazi : Cisimlerin ağırlığını tartmak.

TANIM : f A kümesinden B kümesine bir bağıntı olsun. f bağıntısında

A nın istisnasız her elemanı B nin en fazla ve en az bir elemanı ile eşleşiyorsa f bağıntısına fonksiyon denir ve

şeklinde gösterilir.

A kümesine tanım kümesi,

B kümesine görüntü kümesi denir.

Tanım kümesinin elemanlarına orijinaller,

görüntü kümesinin elemanlarına görüntüler denir.

Bu yeni terimleri kullanarak fonksiyon olma şartını yeniden yazalım :

A'nın her orjinalinin B içinde en az ve en fazla bir tane görüntüsü olacaktır.

ÖRNEK : Aşağıdaki bağıntılardan hangileri A= { 1, 2 , 3 } kümesinden

B = { a, b , c , d } ye fonksiyondur?

1.      1.      1.      1.      1.      Β1 = {(1, b), (2, a) }

2.     2.     2.     2.     2.     Β2 = {(3,b), (1,c), (2,b) }

3.     3.     3.     3.     3.     Β3 = {(1,a), (2,a), (3,a) }

4.     4.     4.     4.     4.     Β4 = {(1,a), (2,b), (1,c) , (3,c) }

ÇÖZÜM :

1.      1.      1.      1.      1.      Β1 = {(1, b), (2, a) }

A kümesindeki 3' orjinalinin B içinde bir görüntüsü yoktur.

Β1 fonksiyon değildir.

2.     2.     2.     2.     2.     Β2 = { (3, b), (1,c), (2,b) }

A kümesindeki her orjinalin B içinde bir görüntüsü vardır.

Β2 fonksiyondur.

3.     3.     3.     3.     3.     Β3 = {(1,a), (2,a), (3,a) }

A kümesindeki her orjinalin B içinde bir görüntüsü vardır.

Β3 fonksiyondur. Görüntüler eşit olabilir.

4.     4.     4.     4.     4.     Β4 = {(1,a), (2,b), (1,c) , (3,c) }

A kümesindeki her orijinalin B içinde yalnız bir tane görüntüsü olacak. Burada 1 orijinali iki tane farklı görüntüye sahiptir.

Β4 fonksiyon değildir.

ÖRNEK : Aşağıda bağıntılardan hangileri bir fonksiyon değildir.

1.      1.      1.      1.      1.      İnsanlar kümesinden meslekler kümesine tanımlanan ve her insanı kendi mesleği ile eşleştiren bağıntı fonksiyon mudur?

ÇÖZÜM : Bu bağıntının fonksiyon olması için her insanın en fazla bir ve en az bir tane mesleği olmalıdır. Oysa gerçekte bazı insanların iki mesleği olduğu gibi bazı insanlarında mesleği olmayabilir. Bu bağıntı fonksiyon değildir.

2. Hayvanlar kümesinden yuvalar kümesine tanımlanan ve her hayvanı kendi yuvasıyla eşleştiren bağıntı fonksiyon mudur?

ÇÖZÜM : Bu bağıntının fonksiyon olması için her hayvanın en fazla ve en az bir tane yuvası olmalıdır. Oysa gerçekte bazı hayvanların yuvalarının olmadığını biliyoruz. Bu bağıntı fonksiyon değildir.

3. Çocuklar kümesinden babalar kümesine tanımlanan ve her çocuğu babasıyla eşleştiren bağıntı fonksiyon mudur?

ÇÖZÜM : Bu bağıntının fonksiyon olması için her çocuğun en fazla ve en az bir tane babası olmalıdır. Gerçekte her çocuğun mutlaka bir babası mevcuttur ve bir çocuğun iki babasının olması biyolojik olarak mümkün değildir. Bu bağıntı fonksiyondur.

UNUTMA : Birkaç çocuğun aynı babaya sahip olması fonksiyon olmayı bozmaz.

4. Bir fabrikadaki işçilerle aldıkları ücretleri eşleştiren bağıntı fonksiyon mudur?

ÇÖZÜM : Bu bağıntı da fonksiyondur. Çünkü bedavaya çalışan olmayacağı için her işçinin bir ücreti mutlaka vardır. Hiçbir patron bir işçiye iki ücret vermeyeceğine göre her işçinin en fazla bir tane ücreti vardır. O halde bu bağıntı fonksiyondur.

  

Fonksiyonlar genellikle yapılan eşlemeyi ifade eden kurallarla verilir.

 

ÖRNEK : f : A = {1, 2, 3 } B

f(x) = 2x + 3

fonksiyonunun sıralı ikililerini yazalım:

Burada tanım kümesinin elemanları ( orijinaller ) verilmiş fakat görüntüler verilmemiştir. Fonksiyonun kuralında x yerine orijinalleri yerleştirerek görüntüleri bulacağız.

1 in görüntüsü f(1) = 2.1 + 3 = 5

2 nin görüntüsü f(2) = 2.2 + 3 = 7

3 ün görüntüsü f(3) = 2.3 + 3 = 9

f = { (1,5), (2,7), (1,c) , (3,9) } şeklinde gösterilir.

ÖRNEK : f = { (-4,3), (0,2), (1,5) , (2,-1), (-3,9), (3,2), (-2,-1) } fonksiyonu veriliyor. Aşağıdaki soruları çözelim:

1.      1.      1.      1.      1.      Tanım kümesi nedir?

2.     2.     2.     2.     2.     Görüntü kümesi nedir?

3.     3.     3.     3.     3.     f(2) = ?

4.     4.     4.     4.     4.     f(-3) = ?

5.     5.     5.     5.     5.     f(5) = ?

ÇÖZÜM :

1.      1.      1.      1.      1.      Sıralı ikililerin birinci bileşenleri tanım kümesinin elemanlarını verir.

A = { - 4, -3 , -2 , 0 , 1 , 2 , 3 }

2.     2.     2.     2.     2.     Sıralı ikililerin ikinci bileşenleri görüntü kümesinin elemanlarını verir.

B = { -1 , 2 , 3 , 5 , 9 }

3. f(2) = ? sorusu " 2 ' nin görüntüsü kaç demektir"

2 ' nin görüntüsü sıralı ikilide 2 nin karşısındaki sayıdır. f(2) = -1

4. f(-3) = ? sorusu " -3 ' ün görüntüsü kaç demektir"

-3 'ün görüntüsü sıralı ikilide -3 ün karşısındaki sayıdır. f(-3) = 9

5. f(5) = ? sorusu " 5 ' in görüntüsü kaç demektir"

5 'in görüntüsü sıralı ikilide 5 in karşısındaki sayıdır.

Sıralı ikililerin hiç birinde 5 birinci bileşen olarak yer almamıştır. Yani bu fonksiyon 5 için tanımlanmamıştır. 5 in görüntüsü yoktur.

 

 

FONKSİYON ÇEŞİTLERİ

 

SABİT FONKSİYON :

f : A B fonksiyonunda bütün orijinaller aynı görüntüye sahip ise f ye sabit fonksiyon denir ve her x є A iзin f (x) = b юeklinde gцsterilir.

ÖRNEK :

A = { 2 ,5 ,7 , } olmak üzere f : A B

f (x) = 6

fonksiyonu sabit fonksiyondur. Çünkü f(2) = f(5) = f (7) = 6 ‘ dır .

ÖRNEK : Her işçisine aynı ücreti veren bir patronun işçileri ile aldıkları ücretleri eşleştiren fonksiyon sabit fonksiyondur.

 

BİRİM FONKSİYON

 

f : A B

f(x) = x ise f fonksiyonuna birim fonksiyon denir .

Yani her elemanın görüntüsü kendisine eşittir .

Birim fonksiyon genellikle I (x) ile gösterilir .

ÖRNEK :

Aşağıda A = { a,b ,c } kümesinde şema ile tanımlanan I : A A

fonksiyonu birim fonksiyondur

Çünkü : I(x) = x olur. I (a) = a , I (b) = b , I (c) = c dir .

 ÖRNEK : Bir kameranın fonksiyonu görüntü almaktır. Kamera ile bir maçı çekersek sonradan seyrettiğimizde kameranın her cismi kendi görüntüsü ile eşleştirdiğini görürüz. Yani hiçbir zaman Ahmet in görüntüsü Mehmet olmaz. Kamera her cismi kendi görüntüsü ile eşleştirir. Kameranın fonksiyonu sabit fonksiyondur.

 

 İÇİNE FONKSİYON

 

f : A B fonksiyonunda orijinallere ait görüntüler görüntü ( B ) kümesinin alt kümesi oluyorsa f , içine fonksiyondur .

ÖRNEK:

Şemada tanım kümesi A = { a , b , c } ve görüntü kümesi B = { 1, 2, 3, 4 } dür.

Oysa orijinallerin görüntüleri f (A) = { 1, 2 } dir.

f (A) kümesi B ' nin alt kümesidir. Fonksiyon içinedir.

Sözün özü B kümesi A kümesinin görüntüleri ile örtülmezse fonksiyon içine olur.

 

Üzgünüm ! Devamı yakında